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SUMMARY

A novel finite volume method has been presented to solve the shallow water equations. In addition to the
volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated
as the model variable and is independently predicted. The numerical reconstruction is conducted based on
both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is
updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations,
while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved.
Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function.
The numerical formulations for both SIA and VIA moments maintain exactly the balance between the
fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments.
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1. INTRODUCTION

The shallow water equations not only serve as a set of governing equations for large-scale water
waves where the wave amplitude is quite small compared with the wavelength, but also provide a
good mathematical model for nonlinear hyperbolic differential equations that may have solutions
like shock wave and expansion fan. Numerical simulations for shallow water equations are of
practical importance in hydraulic and coastal engineering.
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A great number of studies on the numerical solutions to the shallow water equations are found
in the literature. The nonlinear shock solutions in the shallow water equations bring about some
extra difficulties in the construction of numerical methods. High-resolution schemes of either finite
difference method (FDM) or finite volume method (FVM) with exact or approximate Riemann
solvers prove very successful in solving the shallow water equations. Some representative numerical
algorithms for shallow water equations are found in [1]. Implementations of some other more
sophisticated numerical methods, e.g. discontinuous Galerkin (DG) [2] and spectral volume (SV)
[3], are getting an increasing attention from researchers for both theoretical and practical interests.

We have recently developed a novel numerical framework, namely constrained interpolated
profile/multi-moment finite volume method or shortly CIP/MM FVM, for fluid dynamics [4–10].
The underlying idea of a CIP/MM FVM is to utilize more than one type of moments of a physical
field as the model variables. Different from the DG formulation, the moments in a CIP/MM FVM
are defined straightforwardly as the volume-integrated averages (VIA) over a control volume, the
surface-integrated averages (SIA) over a plane segment or the point value (PV) at any specified
point. Different moments are temporally updated by different ways in CIP/MMFVM. For example,
the conserved moment VIA is computed by a flux-based formulation, while the PV or the SIA,
which needs not be exactly conserved, can be updated in time by a semi-Lagrangian method or an
Eulerian method that may not necessarily be conservative. Thus, CIP/MM FVM provides a more
flexible framework for building numerical models.

This paper presents an implementation of the CIP/MM FVM to the shallow water equations.
Two types of moments, which are the VIA and the SIA, are used as the model variables. The
spatial interpolation reconstruction is based on both VIA and SIA to get high accuracy with small
grid stencil. SIA and VIA are separately advanced in time. Making use of the hyperbolicity of the
shallow water equations, SIA is updated by a semi-Lagrangian solution along the characteristic
lines, whereas VIA is advanced through a flux-form formulation. The numerical formulation is
devised so that the source terms are well balanced to the fluxes on the discretized level for both
VIA and SIA moments. The resulting numerical algorithm is accurate and robust. The numerical
results are competitive to other existing numerical methods.

In Section 2, we briefly describe the CIP-CSL3 reconstruction [11] that uses two kinds of
moments and effectively suppresses numerical oscillations. The CIP/multi-moment finite volume
formulations for one and two dimensions are presented in Section 3 with details. Section 4 gives
numerical results including some widely used benchmark tests where shock waves are involved to
validate the numerical method. Finally, we end up with some concluding remarks in Section 5.

2. CIP-CSL METHOD

In this section, we introduce the basic idea of a type of advection schemes, namely the CIP-CSL
methods [11–14], with some details of the CIP-CSL3 reconstruction that is employed in this paper.

The 1D computational domain along the x-axis is partitioned into mesh cells of finite width.
The VIA and the SIA degenerate to the line-integrated average and the PV, respectively. Assuming
that the i th cell is bounded by [xi−1/2, xi+1/2], we defined the VIA of a field variable �(x, t) over
cell i as

V�i =
1

�xi

∫ xi+1/2

xi−1/2

�(x, t)dx (1)
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with �xi = xi+1/2−xi−1/2. The SIA is correspondingly the PV at the cell boundary

P�i+1/2=�(xi+1/2, t) (2)

With one cell-integrated average (V�i ) and two PVs at the cell boundaries (P�i−1/2, P�i+1/2)
known, the CIP-CSL reconstructions can be made. To get rid of numerical oscillations associ-
ating the discontinuous solutions, like shock wave, we used CIP-CSL3 schemes to enforce the
monotonicity.

2.1. CIP-CSL3

The CIP-CSL3 scheme makes use of a cubic interpolation function constructed over a single cell
under the constraints of two PVs at the cell boundaries, VIA over the cell and the first-order
derivative at the middle point of the cell. A cubic interpolation function then reads

�i (x) = a1(x−xi−1/2)
3+a2(x−xi−1/2)

2+a3(x−xi−1/2)+ P�i−1/2

a1 = 4(P�i+1/2− P�i−1/2−�xidi )

�x3i

a2 = 3(−2V�i − P�i+1/2+3P�i−1/2+2�xidi )

�x2i

a3 = 2(3V�i −3P�i−1/2−�xidi )

�xi

(3)

where the first-order derivative di is not treated as a prognostic variable but approximated by other
moments, i.e. PV and VIA. Some practical candidates of the approximations for di can be found
in [11].

We approximate di in this paper using the formula in [15], which effectively eliminates numerical
oscillations in the presence of discontinuities,

d∗
i =

{ min(|��i |,2|�i+1−�i |,2|�i−�i−1|)sgn(��i )

�x if (�i+1−�i )(�i −�i−1)>0

0 otherwise
(4)

where

��i = 1
2 (�i+1−�i−1) (5)

and �i is the PV at the center of the i th cell obtained by (3). Moreover, we can modify the
numerical solution by using

di =�d∗
i (6)

with � being a slope modification parameter. It is clear that if � is bigger than 1, the numerical
solution becomes sharper, while if � is smaller than 1, the numerical solution tends to be flattened
(see Reference [5] for more details).
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2.2. Update of the moments

The original CIP-CSL schemes were devised to solve the conservative transport equation as follows:

��

�t
+ �(u�)

�x
=0 (7)

where � is the advected quantity and u is the velocity.
The conservative moment VIA is solved by a flux-form formulation derived straightforwardly

from (7), while the non-conservative moment PV is computed by a semi-Lagrangian approach
based on the advection form of the transport equation:

��

�t
+u

��

�x
=−�

�u
�x

(8)

In the semi-Lagrangian method, the departure point X for cell boundary xi+1/2 is obtained by
solving the following initial value problem:

dX

dt ′
=−u(x, tn)

X (t ′ =0)= X0≡ xi+1/2

(9)

In this paper, we use the third-order TVD Runge–Kutta method [16] to solve (9) as follows:

X1 = X0−u(X0, t
n)�t

X2 = 3
4 X0+ 1

4 X1− 1
4u(X1, t

n)�t

X3 = 1
3 X0+ 2

3 X2− 2
3u(X2, t

n)�t

(10)

where Xl are the upwind points at each Runge–Kutta sub-step l=0,1,2,3.
Therefore, the PV is updated by (8), (10) as

P�
〈l〉
i+1/2=�(Xl)−

∫
�
�

�u
�x

d� (11)

where l=1,2,3 denotes the Runge–Kutta sub-step, � is the interpolation function in the cell
including Xl , and � represents the trajectory. The PV at the cell boundary of step n+1 is obtained
as

P�
n+1
i+1/2= P�

〈3〉
i+1/2 (12)

The conservative moment VIA is updated by the following finite volume formulation in flux
form:

�V�i

�t
=− 1

�xi
(Fi+1/2(u,�)−Fi−1/2(u,�)) (13)

where F(u,�) denotes the numerical flux.
In this paper, we approximate the numerical flux by

Fi+1/2(u,�)≈F̂i+1/2= F(u, P�
〈0〉
i+1/2)+F(u, P�

〈1〉
i+1/2)+4F(u, P�

〈2〉
i+1/2)

6
(14)
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with the third-order Runge–Kutta method. Finally, the VIA is predicted by

V�
n+1
i =V�

n
i − �t

�xi
(F̂i+1/2−F̂i−1/2) (15)

It is noted that we compute the numerical flux F(u,�) by averaging the PVs sampled at the
Runge–Kutta sub-steps rather than integrating the interpolation function as in the original CIP-CSL
schemes.

3. CIP/MM FVM FOR SHALLOW WATER EQUATIONS

We consider the shallow water equations with source terms:

�U
�t

+ �F
�x

+ �G
�y

=S (16)

with

U=
⎡
⎢⎣

h

hu

hv

⎤
⎥⎦ , F=

⎡
⎢⎢⎣

hu

hu2+ 1
2gh

2

huv

⎤
⎥⎥⎦ , G=

⎡
⎢⎢⎣

hv

huv

hv2+ 1
2gh

2

⎤
⎥⎥⎦ , S=

⎡
⎢⎢⎣

0

Sx

Sy

⎤
⎥⎥⎦ (17)

where h is the water depth, u and v are the x and y components of flow velocity, respectively, and
g is the gravitational acceleration. S is the source term including the bottom effects of topography.

In this section, we firstly describe the numerical procedure of the CIP/MM FVM for the shallow
water equations without source term and then present a well-balanced formulation including the
source terms in one dimension. The 2D scheme is constructed by simply implementing the 1D
formulation with a splitting.

3.1. Formulation for 1D shallow water equations without the source term

Without the source term, the 1D shallow water equations read as

�U
�t

+ �F
�x

=0 (18)

with

U=
[
h

hu

]
, F=

[
hu

hu2+ 1
2gh

2

]
(19)

being the conservative variables and the fluxes, respectively.
In the 1D case, the PVs of the primitive variables h and u at each cell boundary and VIAs of

the conservative variables h and uh over each mesh cell are defined as the moments and hence
predicted variables.
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We at first describe how to update the PVs at the cell boundary. Equation (18) can be recast in
its non-conservative form with the primitive variables W as

�W
�t

+A
�W
�x

=0, W=
[
h

u

]
(20)

and A is the Jacobian matrix of the flux function and defined as

A= �F
�W

=
[
u h

g u

]
(21)

Owing to the hyperbolicity, the characteristic form of the shallow water equations can be derived
as

L
�W
�t

+(LAR)L
�W
�x

=0 (22)

where the matrix of the left eigenvectors L and the right eigenvectors R are

L=− 1

2ch

[−c −h

−c h

]
, R=L−1=

[
h h

c −c

]
(23)

with c=√
gh being the speed of the gravity wave. The diagonalized matrix is made up of the two

characteristic speeds as

K=LAR=
[

�1 0

0 �2

]
=

[
u+c 0

0 u−c

]
(24)

Consequently, the following set of relations of the characteristic variables (or the Riemann
invariants) can be derived:

g

c
dh+du=0 on C1(X0): dx

dt ′
=�1=u+c, x(t ′ =0)= X0

g

c
dh−du=0 on C2(X0): dx

dt ′
=�2=u−c, x(t ′ =0)= X0

(25)

where Cm(X0) denote the characteristic curve corresponding to characteristic speed �m and passing
through cell boundary point X0.

Hence, the primitive variables at X0 can be found by the following relations:

g

c
(h∗−h(1))+(u∗−u(1)) = 0

g

c
(h∗−h(2))−(u∗−u(2)) = 0

(26)

with

�∗ = �(X0)

�(m) = �(X (Cm))
for m=1,2 (27)
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where X (C1) and X (C2) indicate the points on the characteristic curves C1 and C2, respectively.
Consequently, we have

h∗ = 1

2

[
h(1)+h(2)+ c

g
(u(1)−u(2))

]

u∗ = 1

2

[
u(1)+u(2)− g

c
(h(1)−h(2))

] (28)

The upwind points X (Cm) of cell boundary xi+1/2 for characteristic lines Cm are obtained by
solving the following initial value problem for the characteristic speeds �m :

dX

dt ′

∣∣∣∣
i+1/2

= −�m(x, t)

X (t ′ =0) = X0≡ xi+1/2

for m=1,2 (29)

We use the third-order Runge–Kutta method given in the previous section:

X1(Cm) = X0−�m(X0, t
n)�t

X2(Cm) = 3
4 X0+ 1

4 X1(Cm)− 1
4�m(X1, t

n)�t

X3(Cm) = 1
3 X0+ 2

3 X2(Cm)− 2
3�m(X2, t

n)�t

for m=1,2 (30)

Given both the PVs and the VIAs of the primitive variables Ph
n
i+1/2,

Pu
n
i+1/2,

V h
n
i and V u

n
i for

all i at step n (t= tn), the CIP-CSL3 reconstruction of the primitive variables can be made. We

solve Ph
〈l〉
i+1/2 and Pu

〈l〉
i+1/2 for each Runge–Kutta sub-step (l=1,2,3), using the semi-Lagrangian

solutions as

Ph
〈l〉
i+1/2= 1

2

[
H(Xl(C1))+H(Xl(C2))+ c

g
{U(Xl(C1))−U(Xl(C2))}

]
(31)

Pu
〈l〉
i+1/2= 1

2

[
U(Xl(C1))+U(Xl(C2))+ g

c
{H(Xl(C1))−H(Xl(C2))}

]
(32)

where H and U represent the CIP-CSL3 reconstruction interpolation functions for h and u,
respectively.

The PVs of the primitive variables for step n+1 are found directly using

Ph
n+1
i+1/2 = Ph

〈3〉
i+1/2

Pu
n+1
i+1/2 = Pu

〈3〉
i+1/2

(33)

Concerning the updating of the cell-integrated average values of the conservative variables, we
consider the following finite volume formulation in flux form:

�VUi

�t
=− 1

�xi
(Fi+1/2(h,u)−Fi−1/2(h,u)) (34)

where F(h,u) denotes the numerical flux.
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It is obvious that (34) exactly guarantees the conservation of VU. Similar to the scalar conser-
vative transport, the numerical flux in (34) at each cell boundary is approximated as

Fi+1/2(h,u) ≈ F̂i+1/2

= F(Ph
〈0〉
i+1/2,

Pu
〈0〉
i+1/2)+F(Ph

〈1〉
i+1/2,

Pu
〈1〉
i+1/2)+4F(Ph

〈2〉
i+1/2,

Pu
〈2〉
i+1/2)

6
(35)

with the PVs sampled at different sub-steps of the third-order Runge–Kutta method. Finally, the
VIAs of the conservative variables are updated by

VU
n+1
i =VU

n
i − �t

�xi
(F̂i+1/2−F̂i−1/2) (36)

3.2. Formulation for 1D shallow water equations with the source term

We include the effect of the bottom topography as the source term in the 1D shallow water
equations:

�U
�t

+ �F
�x

=S (37)

with the source term expressed as

S=
[
S(1)

S(2)

]
=

⎡
⎢⎣

0

−gh
�z
�x

⎤
⎥⎦ (38)

where z represents the bottom topography.
A numerical scheme in this case is required to give numerically the exact balance between the

flux and the source term. It simply means that the numerical solutions should remain stationary if
one starts from a balanced still state

H(x, t)=h(x, t)+z(x)=constant, u(x, t)=0 (39)

This is the so-called C-property [17] which states that the fundamental balance between source
term and flux gradient

�
�x

(
1

2
gh2

)
=−gh

�z
�x

(40)

should be satisfied on a discretized level.
In a CIP/MM FVM, we have to update the PVs and VIAs of the physical variables. Next we

present the numerical formulations that assure the numerical solutions for both the PV and the
VIA moments satisfying the C-property.

We first describe the updating of PVs at the cell boundary. Just like the previous section,
Equation (37) can be recast in its non-conservative form of the primitive variables W as

�W
�t

+A
�W
�x

=C (41)
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where W and A are the vector of primitive variables and the Jacobian matrix given before, and C
are the reduced source terms

C=
⎡
⎢⎣

0

−g
�z
�x

⎤
⎥⎦ (42)

In an analogous way, the characteristic form can be derived by multiplying (41) with the matrix
of the left eigen vectors,

L
�W
�t

+KL�W
�x

=LC (43)

From (43) we obtain the following set of equations for the Riemann invariants:

g

c
dh+du = −g

∫
�1

�z
�x

d� on C1(X0): dx

dt ′
=�(1) =u+c, x(t ′ =0)= X0

g

c
dh−du = g

∫
�2

�z
�x

d� on C2(X0): dx

dt ′
=�(2) =u−c, x(t ′ =0)= X0

(44)

where �1 and �2 denote the line segments along the characteristic curves C1(X0) and C2(X0),
respectively. We approximate these terms by∫

�1

�z
�x

d�≈− 1

u+c
dz

∫
�2

�z
�x

d�≈− 1

u−c
dz

(45)

The primitive variables at X0 can then be evaluated as follows:

h∗ = 1

2

{
h(1)+h(2)+ c

g
(u(1)−u(2))− c

u+c
(z∗−z(1))+ c

u−c
(z∗−z(2))

}
(46)

u∗ = 1

2

{
u(1)+u(2)− g

c
(h(1)−h(2))− g

u+c
(z∗−z(1))+ g

u−c
(z∗−z(2))

}
(47)

In order to enforce the C-property, we introduce the total elevation of the water surface H =h+z
and re-write (46), (47) into

h∗ = 1

2

{
c

g
(u(1)−u(2))+ 1

u+c
(cH (1)+uh(1)−cz∗)− 1

u−c
(cH (2)−uh(2)−cz∗)

}
(48)

u∗ = 1

2

{
u(1)+u(2)− g

c(u+c)
(cH (1)+uh(1)−cz∗)− g

c(u−c)
(cH (2)−uh(2)−cz∗)

}
(49)

where H (1) =h(1)+z(1) and H (2) =h(2)+z(2). It is straightforward to show that (48) and (49)
satisfy the C-property [18].
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Similarly, after the upstream departure points for each characteristic lines are obtained by the
third-order Runge–Kutta method (30), the PVs of the primitive variables are computed by the
semi-Lagrangian solutions as

Ph
〈l〉
i+1/2 = 1

2

[
c

g
{U(Xl(C1))−U(Xl(C2))}

+ 1

u+c
{cTH(Xl(C1))+uH(Xl(C1))−czi+1/2}

− 1

u−c
{cTH(Xl(C2))−uH(Xl(C2))−czi+1/2}

]
(50)

Pu
〈l〉
i+1/2 = 1

2

[
U(Xl(C1))+U(Xl(C2))

+ g

c(u+c)
{cTH(Xl(C1))+uH(Xl(C1))−czi+1/2}

+ g

c(u−c)
{cTH(Xl(C2))−uH(Xl(C2))−czi+1/2}

]
(51)

whereTH denotes the interpolation function for the total elevation H . For the third-order Runge–
Kutta time integration scheme, we finally have the PVs at the new time step as

Ph
n+1
i+1/2= Ph

〈3〉
i+1/2 and Pu

n+1
i+1/2= Pu

〈3〉
i+1/2 (52)

Concerning the updating of VIA, we consider the semi-discritization formulation of the balance
law as follows:

VU
n+1
i =VU

n
i − �t

�xi
(F̂i+1/2−F̂i−1/2)+ �t

�xi
Ŝi (53)

where

Ŝi =
⎡
⎣Ŝ

(1)
i

Ŝ
(2)
i

⎤
⎦=

⎡
⎢⎣

0

1

�t

∫ tn+1

tn

∫ xi+1/2

xi−1/2

(
−gh

�z
�x

)
dx dt

⎤
⎥⎦ (54)

In order to maintain the C-property of the resulting numerical scheme, the source term S(2) is
split into the following two terms [19]:

S(2) =−gh
�z
�x

=−g(h+z)
�z
�x

+ 1

2
g
�(z2)

�x
(55)
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The second element in (54) is then expressed as

Ŝ
(2)
i = 1

�t

∫ tn+1

tn

∫ xi+1/2

xi−1/2

(
−g(h+z)

�z
�x

+ 1

2
g
�(z2)

�x

)
dx

= −g

2
(Ĥi+1/2+ Ĥi−1/2)(zi+1/2−zi−1/2)+ g

2
((zi+1/2)

2−(zi−1/2)
2)+Ĝi

= −g

2
(ĥi+1/2+ ĥi−1/2)(zi+1/2−zi−1/2)+Gi (56)

where �̂ denotes a weighted averaging of the values of � at the Runge–Kutta sub-steps:

�̂i+1/2=
P�

〈0〉
i+1/2+ P�

〈1〉
i+1/2+4P�

〈2〉
i+1/2

6
(57)

and

Gi =−g
∫ xi+1/2

xi−1/2

{[
1

�t

∫ tn+1

tn
H(x, t)dt− 1

2
(Ĥi+1/2+ Ĥi−1/2)

]
�z
�x

}
dx (58)

In (58), integral
∫ tn+1

tn
∫ xi+1/2
xi−1/2

H(x, t)(�z/�x)dt dx is evaluated by a fourth order Gauss quadrature
with the CIP-CSL3 reconstruction TH(x) based on the corresponding moments at step n+1. It
is clear that Gi equals zero when the total height H is constant. A simpler approximation

∫ tn+1

tn

∫ xi+1/2

xi−1/2

H(x, t)
�z
�x

dt dx≈
∫ xi+1/2

xi−1/2

1

2

(
(Ĥi+1/2+ Ĥi−1/2)

�z
�x

)
dx

directly vanishes G if H =constant.
Consequently, we have, for H =constant, the exactly balanced formulation as follows:

F̂
(2)
i+1/2−F̂

(2)
i−1/2+Ŝ

(2)
i =−g

2
(ĥi+1/2+ ĥi−1/2)(Ĥi+1/2− Ĥi−1/2)=0 (59)

This again states the C-property for the finite volume formulation used to update the VIAs.

3.3. Formulation for 2D shallow water equations

Extending the previous procedure to two dimensions can be simply implemented by dimensional
splitting.

The 2D version of the shallow water equations without the source terms in conservative form
reads

�U
�t

+ �Fx

�x
+ �Fy

�y
=0 (60)
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where

U=
⎡
⎢⎣

h

hu

hv

⎤
⎥⎦ , Fx =

⎡
⎢⎢⎢⎣

hu

hu2+ 1

2
gh2

huv

⎤
⎥⎥⎥⎦ , Fy =

⎡
⎢⎢⎢⎣

hv

huv

hv2+ 1

2
gh2

⎤
⎥⎥⎥⎦ (61)

The quasi-linear form of the shallow water equations of primitive variables is expressed as

�W
�t

+A
�W
�x

+B
�W
�y

=0 (62)

where

W=
⎡
⎢⎣
h

u

v

⎤
⎥⎦ , A= �Fx

�W
=

⎡
⎢⎣
u g 0

h u 0

0 v 0

⎤
⎥⎦ , B= �Fy

�W
=

⎡
⎢⎣

v 0 h

0 0 u

g 0 v

⎤
⎥⎦ (63)

Introducing an arbitrary unit vector n=(nx ,ny), we project the Jacobian matrix onto n as

C=Anx +Bny =
⎡
⎢⎣
unx +vny gnx hny

hnx unx uny

gny vny vny

⎤
⎥⎦ (64)

The eigenvalues of C are

�1=unx +vny+c

�2=unx +vny

�3=unx +vny−c

(65)

The left eigen matrices are correspondingly

L=− 1

2ch

⎡
⎢⎣

−c −hnx −hny

0 ny nx

−c hnx hny

⎤
⎥⎦ (66)

Letting ny and nx be alternatively zero, we decompose the solution procedure into sequential
steps and solve

�U
�t

+ �F�

��
=0 (67)

L� �W
�t

+K�L� �W
��

=0 (68)
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with � separately being x and y. In (68), the matrix of the eigenvalues

K� =

⎡
⎢⎢⎢⎣

��
1 0 0

0 ��
2 0

0 0 ��
3

⎤
⎥⎥⎥⎦ (69)

are computed by

K� =L�UR� (70)

with

Lx =L(ny =0), Ly =L(nx =0) (71)

We denote SIAs and VIA of any physical variable �(x, y, t) by Sx�, Sy� and V� in a 2D
Cartesian coordinate (x, y).

In a Cartesian coordinate, the control volume is defined by a volume element (VE) and four
surface elements (SE) as

Vi j = [xi−1/2, xi+1/2]×[y j−1/2, y j+1/2]
Sxi±1/2 j = xi±1/2∩[y j−1/2, y j+1/2]
Syi j±1/2 = y j±1/2∩[xi−1/2, xi+1/2]

(72)

The volume of the VE and the areas of the SEs are consequently

|Vi j | = �xi�y j

|Sxi±1/2 j | = �y j

|Syi j±1/2| = �xi

(73)

with �xi = xi+1/2−xi−1/2 and �y j = y j+1/2− y j−1/2. The SIAs and the VIA of any physical
variable �(x, y, t) are, respectively, defined on Sxi+1/2 j , S

y
i j+1/2 and Vi j for all computational cells

by

Sx�i+1/2 j =
1

|Sxi+1/2 j |
∫ y j+1/2

y j−1/2

�(xi+1/2, y, t)dy (74)

Sy�i j+1/2= 1

|Syi j+1/2|
∫ xi+1/2

xi−1/2

�(x, y j+1/2, t)dx (75)

and

V�i j =
1

|Vi j |
∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

�(x, y, t)dx dy (76)
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Making use of the dimensional splitting, we solve the 1D problem in the x direction with the
following Riemann invariant solutions derived from (68):

g

c
dh+du = 0 on C1(X0) : dx

dt ′
=�x1 =u+c, x(t ′ =0)= X0

dv = 0 on C2(X0) : dx

dt ′
=�x2 =u, x(t ′ =0)= X0

g

c
dh−du = 0 on C3(X0) : dx

dt ′
=�x2 =u−c, x(t ′ =0)= X0

(77)

Thus, the primitive variables at X0 can be found by the following relations:

h∗ = 1

2

[
h(1)+h(3)+ c

g
(u(1)−u(3))

]

u∗ = 1

2

[
u(1)+u(3)− g

c
(h(1)−h(3))

]
v∗ = v(2)

(78)

We compute the SIAs of the primitive variables at cell boundary, Sx h
〈l〉
i+1/2 j , Sx u

〈l〉
i+1/2 j and

Sx v
〈l〉
i+1/2 j , for each Runge–Kutta sub-step (l=1,2,3), using the semi-Lagrangian solutions as

Sx h
〈l〉
i+1/2 j =

1

2

[
H(Xl(C1))+H(Xl(C3))+ c

g
{U(Xl(C1))−U(Xl(C3))}

]
(79)

Sx u
〈l〉
i+1/2 j =

1

2

[
U(Xl(C1))+U(Xl(C3))+ g

c
{H(Xl(C1))−H(Xl(C3))}

]
(80)

Sx v
〈l〉
i+1/2 j =V(Xl(C2)) (81)

where H, U and V are the CIP-CSL3 reconstruction functions for u, h and v, respectively. The
departure points Xl(Cm) in the characteristic fields Cm are found from an initial value problem
similar to (29) but with the characteristic speeds �(1)

x , �(2)
x and �(3)

x given above. The third-order
Runge–Kutta method (30) is again used here.

The intermediate SIAs of the primitive variables (superscripted by ‘	’) after updating in the x
direction are computed directly using

SxW
	
i+1/2 j =

⎡
⎢⎢⎢⎣

Sx h
	
i+1/2 j

Sx u
	
i+1/2 j

Sx v
	
i+1/2 j

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

Sx h
〈3〉
i+1/2 j

Sx u
〈3〉
i+1/2 j

Sx v
〈3〉
i+1/2 j

⎤
⎥⎥⎥⎥⎦ (82)

The conservative moments VU are updated in the x direction by the flux-form formulation as

VU
	
i j =VU

n
i j −

�t

�xi
(F̂x i+1/2 j −F̂x i−1/2 j ) (83)
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with the numerical fluxes in (83) approximated by averaging the SIAs at the Runge–Kutta sub-step
obtained from (79)–(81):

F̂x i+1/2 j =
Fx (S

xU
〈0〉
i+1/2 j )+Fx (S

xU
〈1〉
i+1/2 j )+4Fx (S

xU
〈2〉
i+1/2 j )

6
(84)

Above process applies to the computations in the y direction by starting with the intermediate

values of SIA and VIA moments, SxU
	
and VU

	
, obtained from the sweep in the x direction.

The dimensional splitting in the 2D formulation requires a so-called time evolution converting
(TEC) formula to update the SIAs which are not computed in the 1D algorithm in the x- or y
directions, respectively. For example, Sx� is updated from the time change of V� due to the 1D
computation in the y direction, while Sy� is updated in the same way with the time change of V�
due to the 1D computation in the x direction. One may refer to [7, 8, 14] for details.

When the source term is included, the dimensional splitting with the 1D building block presented
in Section 3.2 can be implemented in an analogous manner. It is obvious that one can obtain the
C-property in 2D through a splitting only if the 1D formulation possesses the C-property.

Shown above, the splitting technique provides an easier way to make use of the formulations
developed in one dimension, like the limiting projection in the CIP-CSL3 reconstruction and
the numerical formulation for the C-property which appear more complicated in a fully multi-
dimensional framework. The numerical results given in the next section show that the splitting
formulation used in the present paper is able to produce competitive numerical accuracy. When
implemented on unstructured grid, however, a multi-dimensional reconstruction is required. We
should note that the dimensional splitting technique is not essential to extend a multi-moment
formulation to multi-dimensions. As a matter of fact, some formulations based on unstructured
triangular mesh have also been developed in our group and will be reported separately.

4. NUMERICAL RESULTS

In this section, we present numerical results for several typical test problems to verify the presented
numerical methods.

4.1. 1D dam breaking

In the first numerical test [20], the 1D dam-breaking problem is solved in a domain of 0�x�200.
The mesh number is 201 and the time step is 0.1 s. The initial conditions are

h0(x) =
{
hL(m), 0.0�x�100.0

hR(m), 100.0<x�200.0

u0(x) = 0.0

(85)

Two ratios of the initial water depths are separately specified as hL/hR=10 (mild shock) and
hL/hR=100 (strong shock). In both the cases, a shock wave moving right and a rarefaction
fan extending left were generated after the instantaneous collapse of the dam. We computed the
numerical solutions until t=20.0s.
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Figure 1. Numerical results (mild shock) of water depth (a) and velocity (b) at t=20.0s by the present
method (circles) and exact solution (solid line).
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Figure 2. Same as Figure 1, but for the strong shock problem.

The simulated water depths h and the velocity u are depicted against the exact solutions in
Figures 1 and 2. Both the shock wave and the rarefaction wave are accurately resolved. The
conservativeness of the VIA quantities guarantees the correct location of the shock wave. The CIP-
CSL3 reconstruction eliminates the spurious oscillation and the numerical diffusion is effectively
controlled.

Before dealing with more numerical examples, we make a few remarks on the computational cost
of the current scheme. In a multi-moment formulation, although extra memory space is required to
accommodate the newly introduced moment(s), the increase in CPU time is not necessarily much
significant. Using the 1D dam-break test shown above, we compared the CPU time for one-step
updating needed by the current scheme and a TVD scheme that uses the MUSCL reconstruction
[21] and the flux difference scheme of Roe [22]. We ran both schemes on a Linux PC with a
Pentium(R) 2.8GHz CPU. Table I shows the comparison of the run-time in seconds of the two
schemes for different grid sizes.
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Table I. The comparison of the calculation run-time between
a conventional TVD scheme and the present scheme.

Run-time (s)

Mesh number TVD scheme Present scheme

200 0.069 0.097
400 0.146 0.207
600 0.212 0.300
800 0.276 0.381

It is found that compared with a conventional TVD scheme the average-increase in CPU time
of the present scheme is less than 30%.

4.2. 1D symmetrical rarefaction waves

As given in [1], a symmetrically diverging velocity creates two strong rarefaction waves traveling
in opposite directions. The initial condition is given by

h0(x) = 1.0m

u0(x) =
{−5.0m/s, 0.0�x�25.0

5.0m/s, 25.0<x�50.0

(86)

The mesh number is 200 and the time step is 0.02 s. As commentated in [1], this test results
in a very thin water layer in the domain center that may cause a negative height in the numerical
outputs of some schemes. The numerical solutions of the water depth h, and the velocity u at
t=2.5s are plotted in Figure 3. The numerical outputs of both the height and the velocity from
our scheme are accurate.

4.3. 1D test for the exact C-property

The purpose of this test [19, 23] is to verify that the formulation maintains the exact C-property
over a non-flat bottom. In this paper, we computed with two different profiles of the bottom
topography separately given by

z(x)=5.0exp

(
−2

5
(x−5.0)2

)
, 0.0�x�2.0 (87)

and

z(x)=
{
4.0 if 4.0�x�8.0

0.0 otherwise
(88)

We refer to (87) as the smooth bottom and (88) as the discontinuous bottom. The initial conditions
are specified as a stationary state:

h+z=10.0, hu=0.0 (89)

This state should be exactly maintained physically.
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Figure 3. Numerical results of water depth (a) and velocity (b) at t=2.5s by the present
method (circles) and exact solution (solid line).

Table II. L1 and L∞ errors for the stationary solution with a smooth bottom
(87) and a discontinuous bottom (88).

L1 error L∞ error

Bottom h hu h hu

Smooth 1.59E−15 2.07E−14 6.22E−15 8.08E−14
Discontinuous 1.30E−15 1.22E−14 7.11E−15 6.11E−14

We used a mesh of 200 cells and computed the solutions until t=0.5. The L1 and the L∞ errors
for the water height h and the discharge hu are given in Table II for the two bottom profiles. It
is clear that the L1 and the L∞ errors are of a magnitude of the round-off error, which manifests
the exact C-property of the proposed numerical method.

4.4. 1D perturbation of a lake at rest

The purpose of the fourth problem [19, 23, 24] is to test the present formulation regarding the
numerical source term. A small perturbation is imposed to a water mass at rest with variable
bottom topography. The bottom topography is given with

z(x)=
{
0.25(1.0+cos(10.0�(x−0.5))) if 1.4�x�1.6

0.0 otherwise
(90)

where x ∈[0,2]. The initial conditions are

H0(x) =
{
1.0+�H if 1.1�x�1.2

1.0 otherwise

u0(x) = 0.0

(91)
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Figure 4. Numerical results (big pulse) of total height (a) and momentum (b) at t=0.2s by the present
method with a 201 mesh (circle) and a 3001 mesh (solid line).
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Figure 5. Numerical results (small pulse) of total height (a) and momentum (b) at t=0.2s by the present
method with a 201 mesh (circle) and a 3001 mesh (solid line).

where �H is a non-zero perturbation constant. In the presented example, two cases with the initial
perturbations, respectively being �H =0.2 (big pulse) and �H =0.001 (small pulse) have been
examined. The solutions at t=0.2s for the big pulse �H =0.2 over 201 mesh cells and 3001 mesh
cells are shown in Figure 4. The results for small pulse �H =0.001 are shown in Figure 5. The
numerical results are accurate and free of spurious oscillations and look very competitive to those
found in other existing literature [19, 23–25].

4.5. 1D dam-breaking problem over a rectangular bump

In the fifth numerical test, we compute the dam-breaking problem over a rectangular bump involving
a rapidly varying flow over discontinuous bottom topography. It presents a more serious test to
evaluate the robustness and accuracy of the balanced numerical treatment of the source term.
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Figure 6. Numerical results of total height at t=15s: (a) the numerical solution using 401
mesh (circle) with the bottom topography (solid line) and (b) the numerical solution using

401 mesh (circle) and a 4001 mesh (solid line).

The bottom topography is given by

z(x)=
{
8.0m if |x−750.0|�1500.0/8.0

0.0m otherwise
(92)

where x ∈[0,1500].
The initial condition is

H0(x) =
{
20.0m if x�750.0

15.0m otherwise

u0(x) = 0.0m/s

(93)

The numerical results obtained with 401 mesh cells and with 4001 mesh cells are shown in
Figures 6 and 7 for different ending time t=15 and 60 s. The numerical results show that even for
completely discontinuous bottom topography our scheme is still able to reproduce well-balanced
and accurate numerical solutions. Again our numerical results are competitive to other existing
methods.

4.6. 2D circular dam-break problem

A 2D dam-break [26, 27] is solved in the domain of [0,200]×[0,200]. The purpose of this problem
is to test the implementation of the present formulation in two dimensions. The initial conditions
are

h0(x, y) =
{
10.0m (x−25.0)2+(y−25.0)2�(10.5)2

1.0m otherwise

u0(x, y) = 0.0m/s

v0(x, y) = 0.0m/s

(94)

The mesh number is 101×101 and the time step is 0.02 s.
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Figure 7. Numerical results of total height at t=60s: (a) the numerical solution using 401
mesh (circle) with the bottom topography (solid line) and (b) the numerical solution using

401 mesh (circle) and a 4001 mesh (solid line).

Figure 8. Numerical results of water depth at t=0.69s, bird’s eye view (a) and an contour view (b).

Figure 8 shows the bird’s eye view and contour lines of h[m] at t=7.2s. The symmetry of
the numerical solution is well preserved. Figure 9 displays the profiles of h on cross-sections
of the x-axis, y-axis and y= x . The shock wave and the expansion fan are computed with a
direction-independent resolution although a splitting technique has been used on a Cartesian
grid.

4.7. 2D partial dam-break problem

Being one of the most popular benchmark test used to evaluate numerical schemes for shallow
water equations, a 2D partial dam break was computed. A dam is located in the middle of a
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Figure 9. Numerical results at t=0.69s of water depth (a) and total velocity (b).

Figure 10. Numerical results of water depth at t=7.2s. Plotted are the bird’s
eye view (a) and the contour map (b).
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Figure 11. Numerical results of (a) water depth and (b) velocity components at t=7.2s.
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Figure 12. Contour view of the surface level at t=0.12,0.24,0.36,0.48,0.60s with 201×101 grid (left)
and 601×301 grid (right). The contours range from 0.999727 to 1.006286 at t=0.12, from 0.994892 to
1.016554 at t=0.24, from 0.988693 to 1.011509 at t=0.36, from 0.990372 to 1.004979 at t=0.48 and

from 0.995114 to 1.005568 at t=0.60.
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200m×200m square. The initial conditions are

h0(x, y) =
{
10.0m, 0.0�x�100.0

5.0m, 100.0<x�200.0

u0(x, y) = 0.0m/s, v0(x, y)=0.0m/s

(95)

A 75-m-wide breach allows the partial collapse of the dam and generates a 2D bore wave as
plotted in Figure 10 where a 81×81 mesh is used.

To compare with the numerical results given in [28] where numerical tests of shallow water
equations by several well-established Riemann solvers are reported, we ran again the test with a
41×41 mesh and give the profiles of h, u and v on the cross-section of x=92.5m in Figure 11.
It is observed that the present model has competitive numerical accuracy in simulating 2D bore
shock wave.

4.8. 2D test for the source terms of bottom effects

We examined the 2D formulation with the effects of the bottom topography using a numerical
test widely used in the literature [19, 23–25]. The computational domain is [0,2]×[0,1], and the
bottom topography is given by

z(x, y)=0.8exp(−5.0(x−0.9)2−50.0(y−0.5)2) (96)

The initial surface level is almost flat. Only in the region 0.05�x�0.15 it is perturbed upward
by the displacement 0.01 and the initial momentum in the x and y directions is zero:

H0(x, y) =
{
1.01m if 0.05�x�0.15

1.0m otherwise

hu0(x, y) = 0.0m/s

hv0(x, y) = 0.0m/s

(97)

We used two different uniform meshes with [201×101] and [601×301]. Figure 12 shows 30
uniformly spaced contour lines of the surface level H at t=0.12,0.24,0.36,0.48,0.60. The results
obtained with the coarse grid appear on the left side, while on the right half we find the numerical
solutions obtained with the fine grid. The initial perturbation propagates right and is affected by
the bottom. The reflections and interactions of the surface wave result in complex but symmetrical
structures. It is observed that our 2D scheme exactly simulated the symmetrical structure with the
fine structures well resolved.

5. CONCLUSION

We presented a well-balanced numerical formulation for the shallow water equations by using the
CIP/multi-moment finite volume method. Two kinds of moments, namely the volume-integrated
average (VIA) and the surface-integrated average (SIA) are treated as the model variables and
predicted forward in time separately. The VIA moments are computed through a finite volume
formulation in flux form, while the SIAs on each cell boundary are updated by a semi-Lagrangian
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procedure in the characteristic fields. The source terms are discretized so as to exactly balance
the numerical fluxes in terms of both VIA and SIA. The proposed scheme is local, accurate
and robust. The numerical results presented in this paper are quite competitive. The presented
numerical formulation can provide a practical and accurate framework for hydraulic and oceanic
applications.

REFERENCES

1. Toro EF. Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley: New York, 2001.
2. Aizinger V, Dawson C. A discontinuous Galerkin method for two-dimensional flow and transport in shallow

water. Advances in Water Resources 2002; 25:67–84.
3. Choi BJ, Iskandarani M, Levin J, Haidvogel DB. A spectral finite-volume method for the shallow water equations.

Monthly Weather Review 2004; 132:1777–1791.
4. Xiao F. Profile-modifiable conservative transport schemes and a simple multi integrated moment formulation for

hydrodynamics. Computational Fluid Dynamics 2002. Springer: Berlin, 2003; 106.
5. Xiao F, Ikebata A. An efficient method for capturing free boundary in multi-fluid simulations. International

Journal for Numerical Methods in Fluids 2003; 42:187–210.
6. Xiao F. Unified formulation for compressible and incompressible flows by using multi-integrated moments

I: one-dimensional inviscid compressible flow. Journal of Computational Physics 2004; 195:629–654.
7. Xiao F, Akoh R, Ii S. Unified formulation for compressible and incompressible flows by using multi-integrated

moments II: multi-dimensional version for compressible and incompressible flows. Journal of Computational
Physics 2006; 213:31–56.

8. Xiao F, Ikebata A, Hasegawa T. Numerical simulations of free-interface fluids by a multi integrated moment
method. Computers and Structures 2005; 83:409–423.

9. Ii S, Shimuta M, Xiao, F, A 4th-order and single-cell-based advection scheme on unstructured grids using
multi-moments. Computer Physics Communications 2005; 173:17–33.

10. Ii S, Xiao F. CIP/multi-moment finite volume method for Euler equations: a semi-Lagrangian characteristic
formulation. Journal of Computational Physics 2007; 222:849–871.

11. Xiao F, Yabe T. Completely conservative and oscillation-less semi-Lagrangian schemes for advection transportation.
Journal of Computational Physics 2001; 170:498–522.

12. Tanaka R, Nakamura T, Yabe T. Constructing exactly conservative scheme in a non-conservative form. Computer
Physics Communications 2000; 126:232–243.

13. Yabe T, Tanaka R, Nakamura T, Xiao F. Exactly conservative semi-Lagrangian scheme (CIP-CSL) in one
dimension. Monthly Weather Review 2001; 129:332–344.

14. Xiao F, Yabe T, Peng X, Kobayashi H. Conservative and oscillation-less atmospheric transport schemes based
on rational functions. Journal of Geophysical Research 2002; 107:4609.

15. Colella P, Woodward P. The piecewise parabolic method for gas-dynamical simulations. Journal of Computational
Physics 1984; 54:174–201.

16. Shu CW. Total variation diminishing time discretizations. SIAM Journal on Scientific and Statistical Computing
1988; 9:1073–1084.

17. Bermudez A, Vazquez ME. Upwind method for hyperbolic conservation laws with source terms. Computers and
Fluids 1994; 23:1049–1071.

18. Zhou JG, Causon DM, Mingham CG, Ingram DM. The surface gradient method for the treatment of source
terms in the shallow-water equations. Journal of Computational Physics 2001; 168:1–25.

19. Xing Y, Shu CW. High order finite difference WENO schemes for a class of hyperbolic systems with source
terms. Journal of Computational Physics 2005; 208:206–227.

20. Burguete J, Navarro PG. Efficient construction of high-resolution TVD conservative schemes for equations with
source terms: application to shallow water flows. International Journal for Numerical Methods in Fluids 2001;
37:209–248.

21. van Leer B. Toward the ultimate conservative difference scheme. Part V: a second order sequel to Godunov’s
method. Journal of Computational Physics 1979; 32:101–136.

22. Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational
Physics 1981; 43:357–372.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2245–2270
DOI: 10.1002/fld



2270 R. AKOH, S. II AND F. XIAO

23. Xing Y, Shu CW. High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods
for a class of hyperbolic systems with source terms. Journal of Computational Physics 2006; 214:567–598.

24. Noelle S, Pankratz N, Puppo G, Natvig JR. Well-balanced finite volume schemes of arbitrary order of accuracy
for shallow water flows. Journal of Computational Physics 2006; 213:474–499.

25. LeVeque RJ. Balancing source terms and flux gradients in high-resolution Godnov methods: the quasi-steady
wave-propagation algorithm. Journal of Computational Physics 1998; 146:346–365.

26. Lin GF, Lai JS, Guo WL. Finite-volume component-wise TVD schemes for 2D shallow water equations. Advances
in Water Resources 2003; 26:861–873.

27. Wang JW, Liu RX. The composite finite volume method on unstructured meshes for the two-dimensional shallow
water equations. International Journal for Numerical Methods in Fluids 2001; 37:933–949.

28. Erduran KS, Kutija V, Hewett CJM. Performance of finite volume solutions to the shallow water equations with
shock-capturing schemes. International Journal for Numerical Methods in Fluids 2002; 40:1237–1273.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2245–2270
DOI: 10.1002/fld


